Unordered List

Recent Post

health

Titulo

Enginnering Workshop Practice - The Engine Lathe - Parts, Accessories And Maintenance


There are different types of lathes installed in the machine shops in various industries. These include the engine lathe, the horizontal turret lathe, and several variations of the basic engine lathe, such as bench, toolroom, and gap lathes. All lathes, except the vertical turret type, have one thing in common. For all usual machining operations, the workpiece is held and rotated about a horizontal axis, while being formed to size and shape by a cutting tool. In the vertical turret lathe, the workpiece is rotated about a vertical axis. Of the various types of lathes, the type you are most likely to use is the engine lathe. Therefore, this chapter deals only with engine lathes and the machining operations you may have to perform.


An engine lathe is found in every machine shop. It is used mostly for turning, boring, facing, and thread cutting. But it may also be used for drilling, reaming, knurling, grinding, spinning, and spring winding.  
 
The work held in the engine lathe can be revolved at any one of a number of different speeds, and the cutting tool can be accurately controlled by hand or power for longitudinal feed and crossfeed. (Longitudinal feed is the movement of the cutting tool parallel to the axis of the lathe; crossfeed is the movement of the cutting tool perpendicular to the axis of the lathe.)
Lathe size is determined by two measurements: (1) the diameter of work it will swing (turn) over the ways and (2) the length of the bed. For example, a 14-inch by 6-foot lathe will swing work up to 14 inches in diameter and has a bed that is 6 feet long.
Engine lathes vary in size from small bench lathes that have a swing of 9 inches to very large lathes for turning large diameter work such as low-pressure turbine rotors. The 16-inch lathe is the average size for general purposes and is the size usually installed in ships that have only one lathe.

PRINCIPAL PARTS


To learn the operation of the lathe, you must be familiar with the names and functions of the principal parts. Lathes from different manufacturers differ somewhat in construction, but all are built to perform the same general functions. As you read the description of each part, find its location on the lathe in figure 9-1 and the figures that follow. (For specific details of features of construction and operating techniques, refer to the manufacturer’s technical manual for your machine.)
  • Bed and Ways
The bed is the base or foundation of the parts of the lathe. The main feature of the bed is the ways, which are formed on the bed’s upper surface and run the full length of the bed. The ways keep the tailstock and the carriage, which slide on them, in alignment with the headstock.
  • Headstock
The headstock contains the headstock spindle and the mechanism for driving it. In the belt-driven type, shown in figure 9-2, the driving mechanism consists of a motor-driven cone pulley that drives the spindle cone pulley through a drive belt. The spindle can be rotated either directly or through back gears. 
When the headstock is set up for direct drive, a bull-gear pin, located under a cover to the right of the spindle pulley, connects the pulley to the spindle. This connection causes the spindle to turn at the same speed as the spindle pulley.
When the headstock is set up for gear drive, the bull-gear pin is pulled out, disconnecting the spindle pulley from the spindle. This allows the spindle to turn freely inside the spindle pulley. The back-gear lever, on the left end of the headstock, is moved to engage the back-gear set with a gear on the end of the spindle and a gear on the end of the spindle pulley. In this drive mode, the drive belt turns the spindle pulley, which turns the back-gear set, which turns the spindle. Each drive mode provides four spindle speeds, for a total of eight. The back-gear drive speeds are less slower than the direct-drive speeds.
  • Tailstock
The primary purpose of the tailstock is to hold the dead center to support one end of the work being machined. However, the tailstock can also be used to hold tapered shank drills, reamers, and drill chucks. It can be moved on the ways along the length of the bed and can be clamped in the desired position by tightening the tailstock clamping nut. This movement allows for the turning of different lengths of work. The tailstock can be adjusted laterally (front to back) to cut a taper by loosening the clamping screws at the bottom of the tailstock. 
Before you insert a dead center, drill, or reamer, carefully clean the tapered shank and wipe out the tapered hole of the tailstock spindle. When you hold drills or reamers in the tapered hole of the spindle, be sure they are tight enough so they will not revolve. If you allow them to revolve, they will score the tapered hole and destroy its accuracy.
  • Carriage
The carriage is the movable support for the crossfeed slide and the compound rest. The compound rest carries the cutting tool in the tool post.
The carriage has T-slots or tapped holes to use for clamping work for boring or milling. When the carriage is used for boring and milling operations, carriage movement feeds the work to the cutting tool, which is rotated by the headstock spindle.
You can lock the carriage in any position on the bed by tightening the carriage clamp screw. But you do this only when you do such work as facing or parting-off, for which longitudinal feed is not required. Normally the carriage clamp is kept in the released position. Always move the carriage by hand to be sure it is free before you engage its automatic feed.
  • Apron
The apron is attached to the front of the carriage and contains the mechanism that controls the movement of the carriage and the crossslide.
  • Feed Rod
The feed rod transmits power to the apron to drive the longitudinal feed and crossfeed mechanisms. The feed rod is driven by the spindle through a train of gears. The ratio of feed rod speed to spindle speed can be varied by using change gears to produce various rates of feed.

The rotating feed rod drives gears in the apron; these gears in turn drive the longitudinal feed and crossfeed mechanisms through friction clutches.
Some lathes do not have a separate feed rod, but use a spline in the lead screw for the same purpose.
  • Lead Screw
The lead screw is used for thread cutting. It has accurately cut Acme threads along its length that engage the threads of half-nuts in the apron when the half-nuts are clamped over it. The lead screw is driven by the spindle through a gear train. Therefore, the rotation of the lead screw bears a direct relation to the rotation of the spindle. When the half-nuts are engaged, the longitudinal movement of the carriage is controlled directly by the spindle rotation. Consequently, the cutting tool is moved a definite distance along the work for each revolution that the spindle makes.
  • Crossfeed Slide
The crossfeed slide is mounted to the top of the carriage in a dovetail and moves on the carriage at a right angle to the axis of the lathe. A crossfeed screw allows the slide to be moved toward or away from the work in accurate increments.
  • Compound Rest
The compound rest mounted on the compound slide, provides a rigid adjustable mounting for the cutting tool. The compound rest assembly has the following principal parts:
1. The compound rest SWIVEL, which can be swung around to any desired angle and clamped in position. It is graduated over an arc of 90° on each side of its center position for easier setting to the angle selected. This feature is used for machining short, steep tapers, such as the angle on bevel gears, valve disks, and lathe centers.
2. The compound rest, or TOP SLIDE, which is mounted on the swivel section on a dovetailed slide. It is moved by the compound rest feed screw.
This arrangement permits feeding the tool to the work at any angle (determined by the angular setting of the swivel section). The graduated collars on the crossfeed and compound rest feed screws read in thousandths of an inch for fine adjustment in regulating the depth of cut.

Accessories and Attachments

Accessories are the tools and equipment used in routine lathe machining operations. Attachments are special fixtures that may be mounted on the lathe to expand the use of the lathe to include taper cutting, milling, and grinding. Some of the common accessories and attachments are described in the following paragraphs.
TOOL POST.—The sole purpose of the tool post is to provide a rigid support for the tool. It is mounted in the T-slot of the compound rest. A forged tool or a toolholder is inserted in the slot in the tool post. By tightening a setscrew, you will firmly clamp the whole unit in place with the tool in the desired position.
TOOLHOLDERS—Notice the angles at which the tool bits are set in the various holders. These angles must be considered with respect to the angles ground on the tools and the angle that the toolholder is set with respect to the axis of the work.
Two types of toolholders that differ slightly from the common toolholders are those used for threading and knurling. 
The threading toolholder has a formed cutter which needs to be ground only on the top surface for sharpening. Since the thread form is accurately shaped over a large arc of the tool, as the surface is worn away by grinding, the cutter can be rotated to the correct position and secured by the setscrew.
A knurling toolholder carries two knurled rollers which impress their patterns on the work as it revolves. The purpose of the knurling tool is to provide a roughened surface on round metal parts, such as knobs, to give a better grip in handling. The knurled rollers come in a variety of patterns.

BASIC ENGINE LATHE TOOLS

Left-Hand Turning Tool.—This tool is ground for machining work when it is fed from left to right. The cutting edge is on the right side of the tool, and the top of the tool slopes down away from the cutting edge.
Round-Nosed Turning Tool.–This tool is for general-purpose machine work and is used for taking light roughing cuts and finishing cuts. Usually, the top of the cutter bit is ground with side rake so the tool may be fed from right to left. Sometimes this cutter bit is ground flat on top so the tool may be fed in either direction.
Right-Hand Turning Tool.–This is just the opposite of the left-hand turning tool and is designed to cut when it is fed from right to left. The cutting edge is on the left side. This is an ideal tool for taking roughing cuts and for all-around machine work.
Left-Hand Facing Tool.–This tool is intended for facing on the left-hand side of the work. The direction of feed is away from the lathe center. The cutting edge is on the right-hand side of the tool, and the point of the tool is sharp to permit machining a square corner. 
Threading Tool.–The point of the threading tool is ground to a 60-degree included angle for machining V-form screw threads. Usually, the top of the tool is ground flat, and there is clearance on both sides of the tool so it will cut on both sides.
Right-Hand Facing Tool.–This tool is just the opposite of the left-hand facing tool and is intended for facing the right end of the work and for machining the right side of a shoulder.
Square-Nosed Parting (Cutoff) Tool.–The principal cutting edge of this tool is on the front. Both sides of the tool must have sufficient clearance to prevent binding and should be ground slightly narrower at the back than at the cutting edge. This tool is convenient for machining necks and grooves and for squaring comers and cutting off.
Boring Tool.–The boring tool is usually ground the same shape as the left-hand turning tool so that the cutting edge is on the right side of the cutter bit and may be fed in toward the headstock.
Inside-Threading Tool.—The inside-threading tool has the same shape as the threading tool but it is usually much smaller. Boring and inside-threading tools may require larger relief angles when used in small diameter holes.

Lathe chucks. —The lathe chuck is a device for holding lathe work. It is mounted on the nose of the spindle. The work is held by jaws which can be moved in radial slots toward the center of the chuck to clamp down on the sides of the work. These jaws are moved in and out by screws turned by a special chuck wrench.
The four-jaw independent lathe chuck is the most practical chuck for general work The four jaws are adjusted one at a time, making it possible to hold work of various shapes and to adjust the center of the work to coincide with the axis of the spindle. The jaws are reversible.
The three-jaw universal or scroll chuck can be used only for holding round or hexagonal work All three jaws move in and out together in one operation and bring the work on center automatically. This chuck is easier to operate than the four-jaw type, but, when its parts become worn, its accuracy in centering cannot be relied upon. Proper lubrication and constant care are necessary to ensure reliability.
The draw-in collet chuck is used to hold small work for machining in the lathe. It is the most accurate type of chuck made and is intended for precision work. The collet, which holds the work, is a split-cylinder with an outside taper that fits into the tapered closing sleeve and screws into the threaded end of the hollow drawbar. As the handwheel is turned clockwise, the drawbar is moved toward the handwheel. This tightening up on the drawbar pulls the collet back into the tapered sleeve, thereby closing it firmly over the work and centering the work accurately and quickly. The size of the hole in the collet determines the diameter of the work the chuck can handle.
  • Faceplates
The faceplate is used for holding work that, because of its shape and dimensions, cannot be swung between centers or in a chuck. The T-slots and other openings on its surface provide convenient anchors for bolts and clamps used in securing the work to it. The faceplate is mounted on the nose of the spindle.
The driving plate is similar to a small faceplate and is used mainly for driving work that is held between centers. The primary difference between a faceplate and a driving plate is that a faceplate has a machined face for precision mounting, while the face of a driving plate is left rough. When a driving plate is used, the bent tail of a dog clamped to the work is inserted into a slot in the faceplate. This transmits rotary motion to the work.
  • Lathe Centers
The 60-degree lathe centers provide a way to hold the work so it can be turned accurately on its axis. The headstock spindle center is called the LIVE CENTER because it revolves with the work. The tailstock center is called the DEAD CENTER because it does not turn. Both live and dead centers have shanks turned to a Morse taper to fit the tapered holes in the spindles; both have points finished to an angle of 60°. They differ only in that the dead center is hardened and tempered to resist the wearing effect of the work revolving on it. The live center revolves with the work and is usually left soft. The dead center and live center must NEVER be interchanged. (There is a groove around the hardened dead center to distinguish it from the live center.)
The centers fit snugly in the tapered holes of the headstock and tailstock spindles. If chips, dirt, or burrs prevent a perfect fit in the spindles, the centers will not run true.
To remove the headstock center, insert a brass rod through the spindle hole and tap the center to jar it loose; then pull it out with your hand. To remove the tailstock center, run the spindle back as far as it will go by turning the handwheel to the left. When the end of the tailstock screw bumps the back of the center, it will force the center out of the tapered hole.
  • Lathe Dogs
Lathe dogs are used with a driving plate or faceplate to drive work being machined on centers; the frictional contact alone between the live center and the work is not sufficient to drive the work
The common lathe dog is used for round work or work having a regular section (square, hexagon, octagon). The piece to be turned is held firmly in the hole (A) by the setscrew (B). The bent tail (C) projects through a slot or hole in the driving plate or faceplate so that when the tail revolves with the spindle it turns the work with it. The clamp dogmay be used for rectangular or irregularly shaped work. Such work is clamped between the jaws,
  • Center Rest
The center rest, also called the steady rest, is used for the following purposes:
1. To provide an intermediate support for long slender bars or shafts being machined between centers. The center rest prevents them from springing, or sagging, as a result of their otherwise unsupported weight.
2. To support and provide a center bearing for one end of the work, such as a shaft, being bored or drilled from the end when it is too long to be supported by a chuck alone. The center rest is clamped in the desired position on the bed and is kept aligned by the ways. The jaws (A) must be carefully adjusted to allow the work (B) to turn freely and at the same time remain accurately centered on the axis of the lathe. The top half of the frame is a hinged section (C) for easier positioning without having to remove the work from the centers or to change the position of the jaws.
  • Follower Rest
The follower rest is used to back up small diameter work to keep it from springing under the cutting pressure. It can be set to either precede or follow the cutting action. It is attached directly to the saddle by bolts (B). The adjustable jaws bear directly on the part of the work opposite the cutting tool.
  • Taper Attachment
The taper attachment is used for turning and boring tapers. It is bolted to the back of the carriage. In operation, it is connected to the cross slide so that it moves the cross slide traversely as the carriage moves longitudinally, thereby causing the cutting tool to move at an angle to the axis of the work to produce a taper.
The desired angle of taper is set on the guide bar of the attachment. The guide bar support is clamped to the lathe bed Since the cross slide is connected to a shoe that slides on this guide bar, the tool follows along a line parallel to the guide bar and at an angle to the work axis corresponding to the desired taper.
The operation of the taper attachment will be further explained under the subject of taper work
  • Thread Dial Indicator
The thread dial indicator, shown in figure 9-16, eliminates the need to reverse the lathe to return the carriage to the starting point each time a successive threading cut is taken. The dial, which is geared to the lead screw, indicates when to clamp the half-nuts on the lead screw for the next cut.
The threading dial consists of a worm wheel which is attached to the lower end of a shaft and meshed with the lead screw. On the upper end of the shaft is the dial. As the lead screw revolves, the dial is turned and the graduations on the dial indicate points at which the half-nuts may be engaged.
  • Carriage Stop
The carriage stop can be attached to the bed at any point where the carriage should stop. It is used primarily for turning, facing, or boring duplicate parts, as it eliminates taking repeated measurements of the same dimension. In operation, the stop is set at the point where the feed should stop. To use the stop, just before the carriage reaches the stopping point, shut off the automatic feed and manually run the carriage up against the stop. Carriage stops are provided with or without micrometer adjustment. Figure 9-17 shows a micrometer carriage stop. Clamp it on the ways in the approximate position required, and then adjust it to the exact setting by using the micrometer adjustment. (Do not confuse this stop with the automatic carriage stop that automatically stops the carriage by disengaging the feed or stopping the lathe.)

BASIC MAINTENANCE TIPS

  • Every lathe must be maintained strictly according to requirements of the Maintenance and Material Management (3-M) Systems. 

  • The first requirement of maintenance to your lathe is proper lubrication. Make it a point to oil your lathe daily where oil holes are provided. Oil the ways daily-not only for lubrication but to protect their scraped surfaces. Oil the lead screw often while it is in use; this is necessary to preserve its accuracy, for a worn lead screw lacks precision in thread cutting. 

  • Make sure the headstock is filled to the proper oil level; drain the oil out and replace it when it becomes dirty or gummy. If your lathe is equipped with an automatic oiling system for some parts, make sure all those parts are getting oil. Make it a habit to CHECK frequently to see that all moving parts are being lubricated.
  • Before engaging the longitudinal ‘feed, be certain that the carriage clamp screw is loose and that the carriage can be moved by hand. Avoid running the carriage against the headstock or tailstock while it is under the power feed; running the carriage against the headstock or tailstock puts an unnecessary strain on the lathe and may jam the gears.
  • Do not neglect the motor just because it may be out of sight; check its lubrication. If it does not run properly, notify the Electrician’s Mate who is responsible for caring for it. He or she will cooperate with you to keep it in good condition. On lathes with a belt driven from the motor, avoid getting oil or grease on the belt when you oil the lathe or motor. 
  • Keep your lathe clean. A clean and orderly machine is an indication of a good mechanic. Dirt and chips on the ways, on the lead screw, and on the crossfeed screws will cause serious wear and impair the accuracy of the machine.
  • NEVER put wrenches, files, or other tools on the ways. If you must keep tools on the bed, use a board to protect the finished surfaces of the ways.
  • NEVER use the bed or carriage as an anvil. Remember, the lathe is a precision machine, and nothing must be allowed to destroy its accuracy.

NOTE: Before you attempt to operate any lathe, make sure you know how to operate it. Read all operating instructions supplied with the machine. Learn the locations of the various controls and how to operate them.

Read Also

 

 

Engineering Workshop Practice - Lathe Machine Operation - Turning






 Reference Pages

2 comments

  1. Thanks a lot for sharing this great post with us. I always find great knowledge from your site.Keep it up. We are the best Lubricants Suppliers in Iraq



    ReplyDelete
  2. Pretty nice post. I just stumbled upon your weblog and wanted to say that I have really enjoyed browsing your blog posts. After all I’ll be subscribing to your feed and I hope you write again soon! Ремонт креплений фары в Киеве

    ReplyDelete

Symphony

Powered by Blogger.