There is an ever surging increase in the rate of financial crime using the credit card.Traditional magnetic-stripe-only cards ,generally used, are relatively simple to use but also simple to copy for fraudulent means.
Recently, banks have begun issuing so-called "smart cards" that include a microprocessor chip to authenticate, identify and enhance security. But regardless of how complex the code or how many layers of security, the problem remains that an attacker who obtains the information stored inside the card can copy or emulate it.
Though corporations and individuals work to improve safeguards, it has become increasingly difficult to protect financial data and personal information from criminal activity. Fortunately, new insights into quantum physics may soon offer a solution.
This innovative security measure, known as Quantum-Secure Authentication, can confirm the identity of any person or object, including debit and credit cards, even if essential information (like the complete structure of the card) has been stolen. It uses the unique quantum properties of light to create a secure question-and-answer (Q&A) exchange that cannot be "spoofed" or copied.
To provide security in the real world, a credit card -- for example -- would be equipped with a paper-thin section of white paint containing millions of nanoparticles. Using a laser, individual photons of light are projected into the paint where they bounce around the nanoparticles like metal balls in a pinball machine until they escape back to the surface, creating the pattern used to authenticate the card.
If "normal" light is projected onto the area, an attacker could measure the entering pattern and return the correct response pattern. A bank would therefore not be able to see a difference between the real card and the counterfeit signal projected by the attacker.
However, if a bank sends a pattern of single "quantum" photons into the paint, the reflected pattern would appear to have more information -- or points of light -- than the number of photons projected. An attacker attempting to intercept the "question" would destroy the quantum properties of the light and capture only a fraction of the information needed to authenticate the transaction.
"It would be like dropping 10 bowling balls onto the ground and creating 200 separate impacts," said Pinkse. "It's impossible to know precisely what information was sent (what pattern was created on the floor) just by collecting the 10 bowling balls. If you tried to observe them falling, it would disrupt the entire system."
Read more on how it works
No comments